Fabrication and plasmonic characterization of Au nanowires with controlled surface morphology
نویسندگان
چکیده
Gold nanowires are attracting great attention due to their ability to sustain surface plasmons and are thus promising candidates for sensing applications such as surface enhanced Raman and infrared spectroscopy. Controlling all nanowire parameters is crucial to adjust the resonance wavelengths and to obtain high electric field enhancements. We have fabricated Au nanowires with controlled dimensions and surface morphology by electro-deposition of Au and Au-Ag nanowires in the pores of ion-tracketched polymer templates. Smooth and rough nanowires are fabricated by the use of different polymer types. By dealloying of Au-Ag wires, porous Au wires are being created. In addition, we have analyzed the surface plasmonic properties of smooth and porous Au nanowires by scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Our results reveal the excitation of five different longitudinal modes in the smooth as well as in the porous Au wire. The resonance energies of the porous wire are red-shifted compared to the energies of a smooth Au wire with same dimensions, which demonstrates that the surface morphology of the nanowire is an important parameter to tune the multipole surface plasmon modes to specific energies. Knowledge on the plasmonic properties of nanowires dependent on their surface morphology is indispensable for their efficient application for sensor technology. Copyright © 2015 VBRI press.
منابع مشابه
Preparation and Characterization of Tin Oxide Nanowires
The aim of this research is preparation of SnO2 nanowires by means of Thermal chemical reaction vapor transport deposition (TCRVTD) method from SnO powders. The morphology, chemical composition and microstructure properties of the nanowires are characterized using field emission scanning electron microscope (FE-SEM), EDS, and XRD. The XRD diffraction patterns reveal that the SnO2 nanowires have...
متن کاملSize-Controlled Synthesis of Gold Nanostars and Their Characterizations and Plasmon Resonances
Gold nanostar particles were synthesized using seed-mediated method. Au-seed was synthesized with the diameter of approximately 3 nm and a considerably low STDEV of less than 1 nm. Then, different amount of Au seed was introduced into the growth solution of nanostars and the influence of the changes in concentration of Au seed on the growth process was investigated. The size of gold nanostars i...
متن کاملA combined size sorting strategy for monodisperse plasmonic nanostructures.
The fabrication of highly monodisperse silica coated Au NPs by the microemulsion approach and the selection of the nanostructure morphology have been described. Several experimental conditions, synthetic parameters and post-preparative strategies such as reaction time, precursor concentration, size selection techniques and NP surface treatments have been suitably investigated in order to fabric...
متن کاملSelf-Organized Freestanding One-Dimensional Au Nanoparticle Arrays.
One-dimensional Au nanoparticle arrays encapsulated within freestanding SiO2 nanowires are fabricated by thermal oxidation of Au-coated Si nanowires with controlled diameter and surface modulation. The nanoparticle diameter is determined by the Si nanowire diameter and Au film thickness, while the interparticle spacing is independently controlled by the Si nanowire modulation. The optical absor...
متن کاملSilicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching.
This paper presents a non-lithographic approach to generate wafer-scale single crystal silicon nanowires (SiNWs) with controlled sidewall profile and surface morphology. The approach begins with silver (Ag) thin-film thermal dewetting, gold (Au) deposition and lift-off to generate a large-scale Au mesh on Si substrates. This is followed by metal-assisted chemical etching (MacEtch), where the Au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015